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THE REFRACTION OF A PURE SHEAR SHOCK WAVE INTO AN 
ELASTIC-PLASTIC HALF-SPACE* 

A.G. BYKOVTSEV 

Regularities in the propagation of an unloading shock wave are 
investigated as a development of the results of solving the problem of 
the refraction of a pure shear plane elastic wave of arbitrary profile 
into an ideal elastic-plastic half-space. An analytic solution is 
constructed for the problem of the refraction of a wave having the 
shape of a step of finite length in both the active plastic loading 
domain and in the unloading zone. 

1. During pure shear wave propagation the medium is under antiplane deformation con- 
ditions, the displacement velocity vector w is directed along the xg axis, and only depends 
on the variables 511 22 and the time t, and only the stresses z1 = o,~(x,, x2,, t) and r2 = uz3 

6% %, t) are non-zero. The equations of the dynamics of an ideal elastic-plastic body 
are written down in /l/ for this case. Henceforth we shall confine ourselves to investigating 
the selfsimilar solutions of the equations of the dynamics of ideal elastic-plastic media 
which depend on two variables x = x1 - ct and y = x2., The equations of the characteristics 
of the system of equations of motion and the relationships along the characteristics here 
have the following form in the active plastic loading domain /l/: 

dy (M f co&) = r sinBdx, kt3 +Z paw = const (1.1) 

Here k is the yield point, p is the density, u is the shear modulus, a = Jfrp is the vel- 
ocity of propagation of transverse elastic waves, M is the Mach number and 9 is a quantity 
such that T1 = ksine, z2 = kcos8 take only theupper or lower signs, respectively. 

The general integral /l/ 

a,+ W = f(Y) (1.2) 

holds in the elastic domain and in the unloading zone, while the equations of the character- 
istics of the system of equations of motion and the relationships along the characteristics 
have the form /l/ 

.r& 1/M2 - 1 y = cons& u l/M2 - 1 wTccrz = const (1.3) 

Let a pure shear plane wave OA (Fig.11 be incident from the elastic half-space .!I < 0 
with parameters pr, pr, a, = Ifa on the interfacial boundary!/ = 0 with the elastic-plastic 
half-space y> 0 which is characterized by the parameters pl,paraa = 1/G, k whereupon 
a reflected wave OB and a refracted wave OCis formed as a result of its interaction with 
the interfacial boundary. The material in front of the refracted wave front Oc'is at rest 
and there are no initial stresses therein. Complete contact between the elastic and elastic- 
plastic half-spaces is assumed on the interfacial boundary, i.e., the normal stress Q and 
the displacement velocity W are continuous on the interfacial boundary y = 0, whence we 
have /l/ 

w (x) = ZQ(--rain rp,) + w, (--I sin n) (1.4) 

't2 (x) = p-l ctg 'pl (III, (-.z sin 9%) - ~(-5 ain cpl)), cL = ILJPl. 

Here w(x) is the displacement velocity, Q(X) is the stress on the interfacial boundary 
in the elastic-plastic half-space, wr (-2 sin cpJ is a function giving the incident wave 
profile and intensity (considered known according to the formulation of the problem), wz 
(-zsin CpJ is the reflected wave intensity, and 'pl is the angle of incidence. 

System (1.4) is written in dimensionless variables that will also be used later. These 
dimensionless variables are chosen as follows 
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l is the characteristic length, and w * is the characteristic velocity. For simplicity, 
we shall henceforth discard the bars above the letters. 

A solution of the above problem was constructed in /l/ for an arbitrary smooth incident 
wave profile, i.e., for the case when the function wr(-xsincp,) has no discontinuities. 
The following waves propagate successively in the elastic-plastic half-space: an elastic 
load wave, a plastic loading wave, and an unloading wave (UW), which is a wave of weak dis- 
continuity for the case of an incident wave of smooth profile. The construction of an UW of 
weak discontinuity reduces to solving systems of functional equations of complex structure 
/2/, which constrains the possibility of applying analytic investigation methods. An algorithm 
for the numerical construction of the UW of weak discontinuity has been described /3/ for the 
problem under consideration. 

2. We consider the propagation of a shock unloading wave within the framework of the 
problem in question. Later the shockwave will be understood to be an isolated surface moving 
in space on which the stress and displacement velocity undergo a discontinuity. 

The equation of conservation of momentum should be satisfied on the shock UW /4/, which 
in the case under consideration has the form 

IzJvl + hplvs + c,a,‘M Iw] = 0 (2.~1 

Here vl, v, is the projection of the normal vector on the x, y axes, c1 is the UW vel- 
ocity, and [z] = r+ -c'-, z+, z- are the limit values of z on the UW from the plastic loading 
and unloading domains, respectively. 

Fig.1 

It has been shown /5/ that plastic deformation jumps occur only in singular cases, con- 
sequently, the plastic deformations are continuous on the UW front. Using Hooke's law, 
and the kinematic and geometric compatibility conditions /5/, we obtain for the stress jumps 

[TJ = - cc;'vI[w], i = 1,2 (2.2) 

Substituting (2.2) into (2.1) and taking into account that v1 = sin cp, vr = co9 cp, we 
obtain 

[tol (P* - psc12) = 0 (2.3) 
It follows from (2.3) that the shock UW velocity of propagation equals the elastic 

wave velocity of propagation cl=a,=dl"zlp, and the relationships on the line of dis- 
continuity (2.2) take the form 

[T,] = - [w], [r*] = - (/JP - 1 [zo], c -aJsincp, M = ca,' (2.4) 

Here 'p is the angle of refraction such that 

a1 sin cp = a, sin q1 (2.5) 
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If the material on the UW front is in the elastic state, then a constraint on the 
magnitude of the velocity jump follows from the yield condition and (2.4) 

2(/P](T,+ -;~ \'\12T1z2+) f 11P[u>12 : 0 (2.6, 

The quantity [WI remains undetermined in (2.6). 
We will assume that the material behind the UW front is in the elastic state, i.e., 

condition (2.6) is satisfied. The shock UW has the form 

s+J/Ma-ly=xsn (2.7) 

Here XN is a point on the interfacial boundary at which the UW starts to propagate. 
The second relationship of (1.3) with the upper sign holds on the line (2.71, and we 

can write it in the form 

I/~~_l~---~-=I/M*-lwiv---~~ (2.8) 

Here and henceforth, the letter subscript on the quantities I, Tl, TZrW,O (for instance, 
the subscript N in (2.8)) means that the corresponding quantity is evaluated at the point 
denoted by this letter in Fig.1. The quantities w- and Q- are evaluated at an arbitrary 
point of the line (2.7) in the unloading zone. 

We have from relationships (2.4) for an arbitrary point-of the UW, including also for 
the point N 

1/M~-Zw-+z,-=1/M”-l~++~,+ (2.9) 

The boundary condition on the interfacial boundary (1.6) can be written for the point N 
in the unloading zone in the form 

Z?J~(- ssin vl) = ul~-- p tgq,z> (2.10) 

The system of Eqs.(2.8)-(2.10) enables us to determine the quantities ~~~ and w- on 
the line (2.7) in the unloading zone if the solution in the active plastic loading domain is 
known ahead of the UW front. 

Initially we will assume that the stress tensor components Tll =2 and the displacement 
velocity w undergo a discontinuity at the point N. Then, writing relationships (2.91 for 
the point N and solving it in combination with (2.101, the quantities T$ and 'w? can 

be determined and the quantities ~~~ W' are then determined from (2.8) and (2.9) and at an 

arbitrary UW point 

w-=A+B+/V’M2-2, z,-=-AAM”--+B- (2.11) 

A= 
214 (- +y sin Q) A 

. iI*= 
F k+) & AIF (~~~~1 

A+coscp 2 

A = p-l sin cp ctg ‘F~, A, = (cos cp - A)/(A + cos (P) 

F (z’) = p’Mij-_tilliT + tzT 

The relations (2.11) obtained enable us to write 

TV- = xl+ - A + C/l/W - 1 (3.12) 

C = l/Z (b/M% - 1 u’- - ?21 - A,F (ST+)) 

after using (2.4). 
The solution constructed holds in the case when condition (2.6) is satisfied, which can 

be represented by using relationship (2.11), in the form 

2(zl++72+ l/M"--1) f&P (A + C/1/M2- I)-;0 (Z.13) 

Condition (2.13) is written for Iwl > 0. If IUJI < 0 then the symbol < in (2.13) 
should be replaced by the symbol > 

Let us examine another possibie'case when the stress and displacement velocity are 
continuous at the point N but jumps TIT Tzr w are later formed on the shock UW. Then 

IL'&+ S 7+, T:V = 715, GV = G‘Y 

In this case the integral (2.8) and the second condition on the line of strong dis- 
continuity (2.4) take the following form for an arbitrary UW point: 

I/M” - 1 w- - t,- = j/M” - 1 wN+ - rlAy (Z.14) 

1/M*-li~- + Z- = I/?iiw' $- T2+ 

Solving system (2.141, we obtain expressions for z2- and 10~ which are used to 
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determine the jumps of w and T a at an arbitrary UW point 

Because in the plastic loading domain O',<w+,<w$, & <ra+ <O /I/, it follows from 
the first relationship in (2.15) that Iw]<O, and condition (2-6) takes the form 

(2.16) 

But it follows from the solution of the active plastic loading domain /l/ that there 
is a negative quantity on the left side of the inequality (2.16). this means that condition 
(2.16) can be satisfied only when its left side is zero, i.e., for z1+=r2* = 0. This is 
impossible since the material ahead of the IJW front is in the plastic state. 

Therefore, when the stress tensor components and the displacement velocity are continuous 
at the point N the shock UW cannot propagate. 

The displacement velocity jump turns out to be positive on the UW - 
Indeed, it follows from (2.4) that 

Q-=ri++[wl* r*- =.rp+ + 1/Ms-_1(lal (2.17) 

Since the quantities ~~*f0 and ta+ Q 0 in the plastic domain /l/, it then follows 
from (2.17) that the quantities T,- and r,- for [wf<0 increase simultaneously in absolute 
value and hence (tz-Y + (a~-)~> 9, which contradicts the plasticity condition. 

We will henceforth confine ourselves to investigating only the case Iwl> 0 on the 
UW. 

It follows from the first equation in (2.11) that the condition of no jumps in the 
stress and the displacement velocity at the point N h&s the form 

2wr(-zN-sin~1) =wN+ -~t~(px&$ 

Hence, the jump in the stress and the displacement velocity at the point N of an elastic- 
plastic half-space is non-zero (and therefore, the HW is a shock) in two cases: firstly, 
when the function wl(-xsincp,) undergoes a discontinuity at the point N (for instance, if 
the incident wave is in the shape of a step), and secondly when satisfaction of the 
boundary condition on the interfacial boundary is violated at the point N. 

3. We will uss the relationships obtained to investigate the refraction of shear waves 
travelling from an elastic into an elastic-plastic half-space when the incident wave profile 
has the form of a step of finite length z, 'i.e., 

Wl f-- ssintp,) = 
t 

WQ = const, xN<x<o 

0, z<xN 

The solution obtained in /II for the case of the incidence of a wave of arbitrary profile 
enables the solution of the problem to be constructed quite easily in the elastic domain 
and in the plastic loading domain behind the front of the refracted wave OC (Fig-l). 

If the incident wave intensity w ,, satisfies the inequality 

2 Iwo I < Ad% A> = 1 + ~1 tg ~11 tg cp (3.1) 

then the material in the elastic-plastic half-space is in the elastic space. The equality 
symbol in conditions (3.1) corresponds to the condition of the material of the elastic-plastic 
half-space reaching the yield point. The displacement velocity w and the stresses % Ta 
behind the wave front OC are constant 

If inequality (3.1) is not. satisfied then the material in the elastic-plastic half-space 
is deformed plastically. In this case the point 0 is the source of a wave packet. The 
shock OC propagates at the velocity of the elastic waves. The stresses and displacement 
velocity between the characteristics OC; and OE are constant. The yield point is reached 
in this zone but the plastic strain rates are zero. In the domain COE 

w = sin tp, z1 = - sin vp. z. = - cos tp 13.2) 
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The characteristic of the negative direction of the family (1.1) is inclined at an angle 
$ to the ox axis, for which we have 

tg* -- - sin cpi(M t cos VP) 

Later the slope of thecharacteristics of the negative direction of the family (1.1) 
issuing from the point 0 diminishes to the magnitude $, such that 

tgQ, = sinB,/(M - cos 0,) (9.3) 

The quantity 81 in relationships (3.3) satisfies the boundary condition on the 
interfacial boundary f1.41 t which we write in the form 

2p-’ ctg cpxw, = A (l + n + q -@,) - cosel (3.4) 

Plastic deformation of the material occurs behind the wave front @E. The stresses 
and the displacement velocity at points between the characteristics OE and OK are 
determined as foIllows 

rI = sin 6, z2 = co9 e, w = sin (~(1 _t n + cp - 9) (3.5) 

Here t) is the root of the equation governing the location of the appropriate character- 
istic of the family (1.11 passing through the point 0 

y =i xsin%J(M - eos8) (3.61 

where x,y are the coordinates of the point at which the stresses and displacement velocity 
are evaluated. 

The quantities tlr 't*, and W between the characteristic OK and the line ON (Fig.1) 
take constant values and are evaluated by means of (3.5) for 0 = 0,. 

When the incident wave intensity satisfies the inequality 

maI> 1/~(2eincpcosq~d-‘(A{f + @+-I) (3.7) 

a slip zone is foxmed on the interfacial boundary. In this case the characteristic OK 
becomes parallel to the 0~ axis. The line OX is a stationary line of discontinuity on 
which the diSplaGement velocity undergoes a discontinuity, while the stress va is continuous 
across the line OK/l/. The mechanism of formation and the physical interpretation of the 
slip zone were discussed in detail in /I, 3/. In the formulation udner consideration the 
solution in the loading domain is obtained from the solution constructed in the limit case 
in /I/ when the characteristics of the family (1.1) issue from one point and the elastic 
zone is represented in the wave pattern (Fig.11 just by the domain of the constant state of 
stress. 

In the UW case under consideration, NS which propagates from the point # fFig.1) will 
be a shock since'the function IB~(X- sin rp,) undergoes a discontinuity at the point N. There- 
fore, the HW propagates at the elastic wave velocity and its location in the SOP plane 
is determined by (2.7). 

HeGaUSe the UW equation is known, an analytic solution is constructed successfully 
behind the wave front NS by the method of characteristics. 

We proceed as follows to determine the quantities 2, and w at an arbitrary point M 
of the unloading domain. Characteristics MF and MP (Fig.1) of the fami3.y (1.3) are 
drawn through the point M. The characteristic PG of the family (1.3) iwith the lower sign) 
is drawn from the point of intersection of the characteristic MP with the interfacial 
boundary to the intersection with the HW, and using (2.11) a relationship that holds along 
PG can be represented in the form 

$fM"-lflu+**= r/‘~z@_tZ.& (3.8) 

Moreover, the boundary condition (1.4) is satisfied at the point P and takes the follow- 
ing form in the unloading zone: 

lu = P tg 'PI% (3.9) 

Solving (3.8) and (3.9) simultaneously, we determine the quantities W and zs at an 
arbitrary point P of the interfacial boundary 

7; tP = A~(~G~)J(A -i- costp), wp = p tg.cplrsp (3.10) 

This enables us to evaluate the constant in the relationship along the characteristic 

MP 

1/W-- Iw - T*== A,F&*) (3.21) 

Relationship (1.3) (with the lower sign) holds along the characteristic, and using 
(2.11) can be represented in the form 



f/N*--lW$-T I -f/M*-lwp+++;g (3.12) 
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Solving (3.11) and (3.12) jointly, we determine the stress 'cI and the displacement 
velocity W at an arbitrary point M of the unloading zone 

TZM =%(F(~P+) - A,F (so+)). WM ="/stg'~(F(~+) -!- A$ PC+)) (3.13) 

Let us note certain singularities of the solution constructed. The quantities T, and 
W along a segment NK in the unloading zone are determined by (2.11) and since +- + 

w+ = wN+ for any point of the segment NK, it follows from (3.13) that the quant&&?: 
and W take constant values in the domain RKN. It hence follows that along segments of 
characteristics of the family (1.3) (with the lower sign) enclosed between the character- 
istics NS and JR (Fig.11, the quantities zI and w remain constant. 

The material has no plastic deformations in the domain SEOC. The stresses and dis- 
placement velocity are constant and determined by (3.2), consequently, the quantities 7, 
and W do not change along the line SE (characteristics of the family (1.3) with the 
upper sign). Therefore, z1 and W in the domain JSEV take constant values (since the 
constants in the relationships along the characteristics of both families are the same for 
all characteristics of each family). 

We obtain for points of the domain JSEV from the relationships (3.13) 

u, =-i '/stgqAIF(m~+), ~~ = ‘/nA,F(s~+) 

It was taken into account in deriving (3.14) that 

(3.14) 

along characteristics of the family (1.3) (with the lower sign) intersecting the line SE. 
Solving (3.9) and (3.15) simultaneously, we find ten = we = 0, i.e., in the rest zone 

TQH there is no stress zI. 
We have the relationship (1.21 to determine the stress 'Fl3 and which has the following 

form along the line y = const in the unloading zone: 

y = const, z1 + w = const (3.16) 

We obtain from conditions on the line of strong discontinuity (2.4) for the quantity ~~ 

Q- + 1u- = tl+ + w+ (3.17) 

where the quantities ~~-,t~+,w-,w+ are evaluated at the point of intersection of the line 
y = const with the UW. 

It follows from (3.16) and (3.17) that in the unloading domain 

y = const, 71 + w = 71+ + w+ (3.18) 

Because the quantity w was determined above, %1' and tw+ are evaluated by means of 
(3.15) in the plastic loading domain, and we determine the stress v1 at an arbitrary point 
M of the unloading zone (Fig.1) from the relationships (3.19) 

TIM = T:L + EL+ - '/& cph,(F(~+)+ F(G+)) (3.19) 

It follows from (3.19) that after rest has built up behind the UW front, the stress T, 
differs from zero in a layer of depth h of the elastic plastic half-space adjoining the 
interfacial boundary. The magnitude of the residual stress equals 

z1* =& + ZUL' =sin0L+sincp(l+n+cp-083 (3.20) 

Analysis of (3.20) shows that the residual stresses are positive, the quantity tl* 
takes the maximum value on the interfacial boundary and falls to zero as the coordinate y 
increases. The residual stress distribution depends on the incident wave intensity wO, and 
the parameters GDlY P,.P but is independent of the duration of the action (i.e., of the 
length of the incident wave 2). 

We note that the greatest value of zl* is on the interfacial boundary when a slip 
zone occurs on it and this value is independent of w0 for Q satisfying condition (3.7). 

The dependence of the residual stresses on the incident wave intensity w0 is represented 
in Fig.2 for the following parameter values: 

'pl = 80", p = 0.5, p = 0.6, 1 = 10 

Using theorems from geometry we obtain the layer depth from the construction in Fig.1, 
at which map* + 0 

h = sin 'p sin 29, sin*/[sin 'pl sin ((p - $)I (3.21) 

Using (3.3) and (2.5), expression (3.21) with the condition sin 'pl # 0,cos cp # 0 can 
be converted to the form 
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The solution constructed enables US to determine the reflected wave intensity Ir:, (-r 5111 

rp3, Using 11.4) and (3.51, we determine the quantity (LQ f-xsin qrj fur points of the 
interfacial boundary ahead of the UW front, i.e., for SE IKV, 01 

26~~ (-z sin (pl) L= 10~ - p tg 9, cos Nt 

It follows from (I.41 that behind the UW front 

where ,m(x) is evaluated by means of 13.101. 
Qualitative features of the solution are illustrated by the graphs in Fig. 3 for the 

following parameter values: 

CPI = 80", p = 0.5, p = 0.6, uf* -^ 1.8, 2 ;= 15 

Graphs al'e presented of the change in the stresses zI and z2 (soLid lines 1 and 2) 
behind the refracted wave fxont OC for y =-i 4. An analogous dependence for the velocity u 
is represented by the dashed line 1. A change in the reflected wave intensity w, on the 
interfacial boundary is shown by the dashed line 2. 

Fig.2 Fig.3 

4,The solution constructed holds when the material behind the front is in the elastic 
stat%, i.e., the stresses calculated by means of 13.13) and (3,191, satisfy the inequality 

"1% + +a2 < I (4.1) 
To simplify the subsequent writing, we introduce the notation 

a = Z[siaO, $ sin q(i + n -;1- (p--f+)], zI =cosBF + cosg, (I +-n + CF --.o~) (4.2) 
da :=:: GO5 e, -i_ cos rp (1 _t a + g, - RG) 

We then obtain from 14.21, (3.131, and (3.20) 
FX - PI (2, $3, z*) = lz - tg qJ (ZX _t A,z# -f- Iz, - AI&l:! = 4 (SIB + +#*I (4.3) 

Let us determine the extrema of the function PIN The determinant of the system of 
equations obtained by equating the partial derivatives of the function F, with respect to 
a,z,* zs to zero equals zero. Tharefore, this system has an infinite set of solutions of 
the form 

4" = A,z+, B* -= A,+ tg g, (4.4) 

Substitution of the solutions (4.4) into 14.3) yields lC1(qa,~l\~,)-OO. The function PX 
therefore takes the greatest value on the boundary of the'domain of definition of its arguments. 

We will investigate the behaviour of the function Fz on the characteristics of the 
family (1.3) (with the lower sign). In this case the search for the extrema of the func- 
tion Pz reduces to the problem of determining the conditional extremum of the function Pz 
under the condition 

z* = Cl?rlSl (4.5) 
we obtain from (Q,J)-(4.5) and the necessary condition for the existence of a conditional 

extremum that the function FX can have a conditional extremum only at the points is* r n,i,, 
I* = tgrpz,. But F,(s*,s,,%*)== 0. Consequently, the function F, takes its greatest value on 
charaGteristj,cs of the family (1.3) at points of intereection of these later with the UW Or 
with the interfacial boundary. 

The elastic solution holds along the characteristic *YS of the family (1.3) (with the 
upper sign! Fig.11 in the unloading domain when condition (2.13) is satisfied, and we can 
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write it in the form 

F,(O,,t3,)=2 (sinBp -tv/MP cosBr)+%M(l-7 n+ 'p---r- 

Ai (1 + n + ‘p - ON)) - ‘h (M2/1/M* - 1) (COS oF -k AI COS e,,d G 0 (4.6) 

( F is an arbitrary point of the characteristic NS). Differentiating the function FP(BF.BN) 
along the characteristic NS we obtain 

(4.7) 

Here fi is the unit vector giving the direction of the characteristics NS with the 
coordinates lki = C09Qi, CLi are the angles between the vector is and the positive directions 
of the coordinate axes. It was taken into acccount in deriving (4.7) that the quantity 0, 
in (4.6) remains constant for any point of the characteristic NS . 

We have 0, E [n, IC + cpl, aOF/a2 < 0. 83,/ay > 0 from the solution constructed earlier in the 
plastic loading domain. Consequently, we obtain from (4.7) that aF,/am q 0. Therefore, 
the function F,(B F9B,) takes the greatest value at the point N. But since the function 

F, (2, 21, 3 on any characteristic of the family (1.3) (with the lower sign) takes the 
greatest value at the point of intersection with either the interfacial boundary or with 
the UW, we then find that codition (4.1) can be violated first at points of the interfacial 
boundary. Therefore, by using (3.10) and (3.19) we conclude that the solution constructed 
holds when the following inequality is satisfied: 

L&+r,--t gTArF(ze)l'+ [F (xc) A&AX+ cos 'P)]'< 1 

Otherwise, secondary plastic flows occur behind the UW front and the construction of 
the solution then requires a separate investigation. 
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