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THE REFRACTION OF A PURE SHEAR SHOCK WAVE INTO AN
ELASTIC-PLASTIC HALF-SPACE™

A.G. BYKOVTSEV

Regularities in the propagation of an unloading shock wave are
investigated as a development of the results of solving the problem of
the refraction of a pure shear plane elastic wave of arbitrary profile
into an ideal elastic-plastic half-space. An analytic solution is
constructed for the problem of the refraction of a wave having the
shape of a step of finite length in both the active plastic loading
domain and in the unloading zone.

1. puring pure shear wave propagation the medium is under antiplane deformation con-
ditions, the displacement velocity vector w is directed along the z, axis, and only depends
on the variables z;, 1, and the time t, and only the stresses T; = 03 (T}, %3, £) and 7T, = Oy
(zy, g, 1) are non-zero. The equations of the dynamics of an ideal elastic-plastic body
are written down in /1/ for this case. Henceforth we shall confine ourselves to investigating
the selfsimilar solutions of the equations of the dynamics of ideal elastic-plastic media
which depend on two variables z =z, — ¢t and y = z,, The equations of the characteristics
of the system of equations of motion and the relationships along the characteristics here
have the following form in the active plastic loading domain /1/:

dy (M = cosB) = I sin 0dz, kO = paw = const (1.1

Here kX is the yield point, p is the density, u is the shear modulus, a = VﬁTé is the vel-
ocity of propagation of transverse elastic waves, M is the Mach number and 6 is a quantity
such that 71, = ksinf, 1, = kcos® take only the upper or lower signs, respectively.

The general integral /1/

oty + pw = £ (y) (1.2)

holds in the elastic domain and in the unloading zone, while the equations of the character-
istics of the system of equations of motion and the relationships along the characteristics
have the form /1/

r4- VY MZ =Ty =const, p} Mf—1wFcrt,=_const (1.3)

Let a pure shear plane wave (A4 (Fig.l) be incident from the elastic half-space y<<0
with parameters Iy, p;, @, = VET/E on the interfacial boundary ¥ = 0 with the elastic-plastic
half-space y>>0 which is characterized by the parameters p, py, a3 = V py/ps, &  whereupon
a reflected wave OB and a refracted wave OC is formed as a result of its interaction with
the interfacial boundary. The material in front of the refracted wave front OC is at rest
and there are no initial stresses therein. Complete contact between the elastic and elastic-
plastic half-spaces is assumed on the interfacial boundary, i.e., the normal stress 1, and
the displacement velocity w are continuous on the interfacial boundary y = 0, whence we
have /1/

w (z) = w; (—z sin @) + w, (—z sin ¢,) (1.4)
T, (2) = W ctg @, (Wy (—z sin @) — wy (—z sin @), p = [T

Here w (z) is the displacement velocity, 7T,(z) is the stress on the interfacial boundary
in the elastic-plastic half-space, w, (—z sin¢,) is a function giving the incident wave
profile and intensity (considered known according to the formulation of the problem), w,
(—x sin ¢;) is the reflected wave intensity, and ¢, is the angle of incidence.

System (1.4) is written in dimensionless variables that will also be used later. These
dimensionless variables are chosen as follows
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x - y - T - Ta = __ W = W
Z:—-l—-’ y=T’ T1=-k—, Tz-—k' w—w,, wl—-"—-w‘,
— Wy »_ ok
w2=——.-' w -_}—L;

1l is the characteristic length, and w * is the characteristic velocity. For simplicity,
we shall henceforth discard the bars above the letters.

A solution of the above problem was constructed in /1/ for an arbitrary smooth incident
wave profile, i.e., for the case when the function w,(—zsin ;) has no discontinuities.
The following waves propagate successively in the elastic-plastic half-space: an elastic
load wave, a plastic loading wave, and an unloading wave (UW), which is a wave of weak dis-
continuity for the case of an incident wave of smooth profile. The construction of an UW of
weak discontinuity reduces to solving systems of functional equations of complex structure
/2/, which constrains the possibility of applying analytic investigation methods. An algorithm
for the numerical construction of the UW of weak discontinuity has been described /3/ for the
problem under consideration.

2. We consider the propagation of a shock unloading wave within the framework of the
problem in question. Later the shockwave will be understood to be an isolated surface moving
in space on which the stress and displacement velocity undergo a discontinuity.

The equation of conservation of momentum should be satisfied on the shock UW /4/, which
in the case under consideration has the form

[t,lv, + [tolvy + @M [w) = 0 2.1)

Here wv;, v, 1is the projection of the normal vector on the z, y axes, ¢, is the UW vel-

ocity, and [t] =t — 1, vt T are the limit values of T on the UW from the plastic loading
and unloading domains, respectively.

q

\

Fig.1

It has been shown /5/ that plastic deformation jumps occur only in singular cases, con-
sequently, the plastic deformations are continuous on the UW front. Using Hooke's law,
and the kinematic and geometric compatibility conditions /5/, we obtain for the stress jumps

[t = — ce™v[w], i=1,2 2.2)
Substituting (2.2) into (2.1) and taking into account that v, = sing, v, = cos @, we
obtain
lwl {pe — poey®) = 0 2.3)
It follows from (2.3} that the shock UW velocity of propagation equals the elastic

wave velocity of propagation ¢, = a, = V w/ps and the relationships on the line of dis-~
continuity (2.2) take the form

[tl=—[], [Gl=—VMHE=T[w], c=a,fsing, M=ca’ (2.4)
Here ¢ is the angle of refraction such that

a, sin ¢ = a, sin @, (2.5)
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If the material on the UW front is in the elastic state, then a constraint on the
magnitude of the velocity jump follows from the yield condition and (2.4)

2l ry - M T ) - ME[w]E e O (2.6

The quantity lw] remains undetermined in (2.6).
We will assume that the material behind the UW front is in the elastic state, i.e.,
condition (2.6) is satisfied. The shock UW has the form

c+ VW —1y=zy 2.7

Here zy is a point on the interfacial boundary at which the UW starts to propagate.
The second relationship of (1.3) with the upper sign holds on the line {2.7), and we
can write it in the form

VM= Tw —v, =V M —Twy —T5n (2.8)

Here and henceforth, the letter subscript on the quantities =z, T;, T, w,0 (for instance,
the subscript ¥ in (2.8)) means that the corresponding quantity is evaluated at the point
denoted by this letter in Fig.l. The quantities »~ and 1, are evaluated at an arbitrary
point of the line (2.7) in the unloading zone.

We have from relationships (2.4) for an arbitrary point-of the UW, including also for
the point N

VIV Tw 41, = Y B Tw* 4+ 1y (2.9)

The boundary condition on the interfacial boyndary (1.6) can be written for the point N
in the unloading zone in the form

2wy (— zsin @) =wn" — P tg T (2.10,

The system of Egs.(2.8)-(2.10) enables us to determine the guantities T, and &~ on
the line (2.7) in the unloading zone if the solution in the active plastic loading domain is
known ahead of the UW front.

Initially we will assume that the stress tensor components T;, Ty and the displacement
velocity & undergo a discontinuity at the point N. Then, writing relationships (2.9) for
the point ¥ and solving it in combination with (2.10), the gquantities 1t and ' wx can
be determined and the quantities 7, w' are then determined from (2.8) and (2.9) and at an
arbitrary UW point

w=AL B YT, 1, =— AYME=T+ B~ (2.1
2wy (— zp” sing1) A + F(a*) 4 AF (2yh)
A= e — B

A =plsingetgg,, A, = (cos@ — A)/(A + cos @)
Flty = Y ME=Tw* + 1,7
The relations (2.11) obtained enable us to write
=1 ALCYME—T (2.12)
C=1 (YVE=Tu* — 1,  —AF (24"

after using (2.4).
The solution constructed holds in the case when condition (2.6) is satisfied, which can
be represented by using relationship (2.11), in the form

2(n 1 VM=) + M2 (A4 + C/Y MP—T) <0 (2.13)

Condition (2.13) is written for Ilw] >0. If Iw]l<C0 then the symbol < in (2.13)
should be replaced by the symbol >>.

Let us examine another possible case when the stress and displacement velocity are
continuous at the point N but jumps 1,, 7,, w are later formed on the shock UW. Then

+ _ + - + -
Wy = Uy, TN =Tn, Teny =TeN

In this case the integral (2.8) and the second condition on the line of strong dis-
continuity (2.4) take the following form for an arbitrary UW point:

VM2 —Tw —1, =V ME—Twy' — Tyy (2.14)
VM2 —fw 1, = Y M= Tw 4 1,°

Solving system (2.14), we obtain expressions for 1, and @ which are used to
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determine the jumps of w and T, at an arbitrary UW point

wt —~wpt T3 —~ 1}y
W) sz ————— 22N 2.15
] 2 2 MF 1 (213)
Tt — T w—1
{,‘2} = . N v . (?L*""wN*)

Because in the plastic loading domain O<Cw'<Cwh, 7wy <1t <0 /1/, it follows from
the first relationship in (2.15) that [w]l< 0, and condition (2.6} takes the form

[ t gt T —
2(tl++r{'VM2-~1)+M2(w—;i—w-é~i7ﬁ—_i_%>>0 (2.16)

But it follows from the solution of the active plastic loading domain /1/ that there
is a negative quantity on the left side of the inequality (2.16)}. this means that condition
{2.16) can be satisfied only when its left side is zero, i.e., for 7" =1"=0. This is
impossible since the material ahead of the UW front is in the plastic state.

Therefore, when the stress tensor components and the displacement velocity are continuous
at the point N the shock UW cannot propagate.

The displacement velocity jump turns out to be positive on the UW .

Indeed, it follows from (2.4) that

= nt k], T =tt 4+ VMEST [w] (2.17)

Since the quantities t*<6 and 1*<0 in the plastic domain /1/, it then follows
from {2.17) that the quantities 7t~ and <, for [wi<0 increase simultaneously in absolute
value and hence (y P+ (m )21, which contradicts the plasticity condition.

o We will henceforth confine ourselves to investigating only the case [w]}>>0 on the

It follows from the first equation in (2.11) that the condition of no jumps in the

stress and the displacement velocity at the point N has the form

2wy (— 2y sin @) = wy* ~ ptg @iay

Hence, the jump in the stress and the displacement velocity at the point N of an elastice
plastic half-space is non-zero {(and therefore, the UW is a shock) in two cases: firstly,
when the function w,{(—zsin@,} undergoes a discontinuity at the point ¥ (for instance, if
the incident wave is in the shape of a step}, and secondly when satisfaction of the
boundary condition on the interfacial boundary is violated at the point N.

3. We will use the relationships obtained to investigate the refraction of shear waves
travelling from an elastic into an elastic-plastic half-space when the incident wave profile
has the form of a step of finite length 1, i.e.,

R wy == const, Ty Lx< 0
wy{~-zsingy) = 0, t <o

The solution obtained in /1/ for the case of the incidence of a wave of arbitrary profile
enables the solution of the problem to be constructed quite easily in the elastic domain
and in the plastic loading domain behind the front of the refracted wave OC (Fig.l).

If the incident wave intensity w, satisfies the inequality

2wy | K AM, Ay =1+ ptgg/tge (3.1)

then the material in the elastic-plastic half-space is in the elastic space. The equality
symbol in conditions (3.1) corresponds to the condition of the material of the elastic-plastic
half-space reaching the yield point. The displacement velocity w and the stresses Ty, Tg
behind the wave front OC are constant

w=2wofBy Ty = — 2ug/By, T, = — 2V MEZT /A,

If inequality (3.1) is not satisfied then the material in the elastic-plastic half-space
is deformed plastically. In this case the point O is the source of a wave packet. The
shock OC propagates at the velocity of the elastic waves. The stresses and displacement
velocity between the characteristics OC and OF are constant. The yield point is reached
in this zone but the plastic strain rates are zero. In the domain COE

w=sing, 1, = —sing, T,= —cos P 3.2)
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The characteristic of the negative direction of the family (1.1} is inclined at an angle
4 to the Ox axis, for which we have

tgp = - sin ¢/(M 4+ cos ¢)
Later the slope of thecharacteristics of the negative direction of the family (1.1)
issuing from the point O diminishes to the magnitude ¢, such that
tg Py = 8in 8,/(M — cos 6,) (3.3)

The quantity ©; in relationships (3.3} satisfies the boundary condition on the
interfacial boundary (1.4}, which we write in the form

2ptetg o, = A {1 + n + ¢ —8,) — cos, (3.4)

Plastic deformation of the material occurs behind the wave front OE. The stresses
and the displacement velocity at points between the characteristics OF and OK are
determined as follows

T, =38in0, v, =cos 0, w=sing(! +n -+ q¢-—20) (3.9)

Here 8 is the root of the equation governing the location of the appropriate character-
istic of the family (1.1} passing through the point O

= z sin 6/(M — cos 8) {3.6)

where z,y¥ are the coordinates of the point at which the stresses and displacement velocity
are evaluated.

The quantities 1t,, t,, and ¥ between the characteristic OK and the line ON (Fig.1)
take constant values and are evaluated by means of (3.5) for 6 =290,.

When the in¢ident wave intensity satisfies the inequality

wol > VP (2singcos @) (A1 + @)+ 1) 3.7
a slip zone is formed on the interfacial boundary. In this case the characteristic 0K

becomes parallel to the 0Oz axis. The line 0K is a stationary line of discontinuity on
which the displacement velocity undergoes a discontinuity, while the stress =1, is continuous
across the line 0K /1/. The mechanism of formation and the physical interpretation of the
slip zone were discussed in detail in /1, 3/. In the formulation udner consideration the
solution in the loading domain is obtained from the solution constructed in the limit case

in /1/ when the characteristics of the family (1.1) issue from one point and the elastic

zone is represented in the wave pattern (Fig.1l) just by the domain of the constant state of
stress.

In the UW case under consideration, A§ which propagates from the point ¥ (Fig.l) will
be a shock since’the function w, {(zr— sin ¢,) undergoes a discontinuity at the point N. There-
fore, the UW propagates at the elastic wave velocity and its location in the 20y plane
is determined by {(2.7}.

Because the UW equation is known, an analytic solution is constructed successfully
behind the wave front NS by the method of characteristics.,

We proceed as follows to determine the quantities rt, and w at an arbitrary point o
of the unloading domain. Characteristics MF and MP (Fig.l) of the family (1.3) are
drawn through the point Y. The characteristic PG of the family (1.3) (with the lower sign)
is drawn from the point of intersection of the characteristic MP with the interfacial
boundary to the intersection with the UW, and using {2.11) a relationship that holds along
PG can be represented in the form

VME—Twtr,= MW —Tus*+1% {3.8)
Moreover, the boundary condition (1.4) is satisfied at the point P and takes the follow-

ing form in the unloading zone:
w == ig @i, (3.9)

Solving {3.8) and {3.9) simultaneously, we determine the quantities w and Ty at an
arbitrary point P of the interfacial boundary

Typ == AF (26")/(A + cos @), wp = pigQ Ty, (3.10)
This enables us to evaluate the constant in the relationship along the characteristic
MP
VMEZTw — 1, = A F (26Y) (3.11)

Relationship (1.3) (with the lower sign) holds along the characteristic, and using
(2.11) can be represented in the form
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VM —Twt1, =V M —Tws +ir (3.12)

Solving (3.11) and (3.12) jointly, we determine the stress T, and the displacement
velocity w at an arbitrary point ¥ of the unloading zone

Tomt =3 (F (z5*) — AF (26%),  wy =318 9 (F(z5') + BF (z6")) (3-13)

Let us note certain singularities of the solution constructed. The quantities T, and
w along a segment NK in the unloading zone are determined by (2.11) and since TaF = Tan,
w* = wy* for any point of the segment NXK, it follows from (3.13) that the quantities T,
and w take constant values in the domain RKN. It hence follows that along segments of
characteristics of the family (1.3) (with the lower sign) enclosed between the character-
istics N§ and JR (Fig.l), the quantities 1, and w remain constant.

The material has no plastic deformations in the domain SEOC. The stresses and dis-
placement velocity are constant and Qetermined by (3.2), consequently, the quantities Ty
and w do not change along the line SE (characteristics of the family (1.3) with the
upper sign). Therefore, 1, and ® in the domain JSEV  take constant values (since the
constants in the relationships along the characteristics of both families are the same for
all characteristics of each family).

We obtain for points of the domain JSEV from the relationships (3.13)

w = Y tg gAF (an*), Ty =00 F (zn) (3.14)
It was taken into account in deriving (3.14) that
VME—Tw41,=0 (3.15)

along characteristics of the family (1.3) (with the lower sign) intersecting the line SE.
Solving (3.9) and (3.15) simultaneously, we find 1T,y =wy =0, i.e., in the rest zone
TQH there is no stress T,.
We have the relationship (1.2) to determine the stress 1, and which has the following
form along the line y = const in the unloading zone:

y = const, T, + w = const (3.16)

We obtain from conditions on the line of strong discontinuity (2.4) for the quantity T,
oy tw =1+ w (3.47)
where the guantities 1,7, 1,", w”, w* are evaluated at the point of intersection of the line

= const with the UW.
It follows from (3.16) and (3.17} that in the unloading domain

y = const, T, + w =1," + w* (3.18)
Because the guantity w was determined above, rf and 'w* are evaluated by means of

(3.15) in the plastic loading domain, and we determine the stress T, at an arbitrary point
M of the unloading zone (Fig.l) from the relationships (3.19)

Tun = Typ + wrt — Y48 @A, (F (25%) + F (25%)) (3-19)
It follows from (3.19) that after rest has built up behind the UW front, the stress T,
differs from zero in a layer of depth h of the elastic plastic half-space adjoining the
interfacial boundary. The magnitude of the residual stress equals
T =T +wr =sin 0, +sing(1+ n 4+ ¢ — 6y) (3.20)
Analysis of (3.20) shows that the residual stresses are positive, the quantity v

takes the maximum value on the interfacial boundary and falls to zero as the coordinate Yy
increases. The residual stress distribution depends on the incident wave intensity w,, and
the parameters @, f,0 but is independent of the duration of the action (i.e., of the
length of the incident wave 1).
We note that the greatest value of 7* 1is on the interfacial boundary when a slip
zone occurs on it and this value is independent of w, for w, satisfying condition (3.7).
The dependence of the residual stresses on the incident wave intensity i, is represented
in Fig.2 for the following parameter values:

¢, = 80°, p =05, p=06,1=10

Using theorems from geometry we obtain the layer depth from the construction in Fig.1,
at which ‘1,* 5= 0

h = sin ¢ sin 2¢, sin P/[sin @, sin (p — P)] (3.21)

Using (3.3) and (2.5), expression (3.21) with the condition sing,#0,cos9 %0 can
be converted to the fornm
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The solution constructed enables us to determine the reflected wave intensity wy (—z sin
p). Using {1.4) and (3.5), we determine the quantity uw, (—x sin @) for points of  the
interfacial boundary ahead of the UW front, i.e., for z& [y, 0

wy (—x sin @) = wy — 1 g ¢, cos B,
It follows from (1.4} that behind the UW front
wy (3 8N ) = w (2}

where w{z) 1is evaluated by means of (3.10).
Qualitative features of the solution are illustrated by the graphs in Fig. 3 for the
following parameter values:

Py =80% p =05 p=08, wy=18 1=15
Graphs are presented of the change in the stresses ¥, and 1, (solid lines I and 2)
behind the refracted wave front OC for y = 4. An analogous dependence for the velocity w

is represented by the dashed line 7. A change in the reflected wave intensity 1w, on the
interfacial boundary is shown by the dashed line 2.
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4, The solution constructed holds when the material behind the front is in the elastic
state, 1.e., the stresses calculated by means of {3.13) and {3.19), satisfy the inequality

Wbl 4.1)
To simplify the subsequent writing, we introduce the notation
22 2(sin®; +ain@ (14 @—0p)] 21 =008 0p + co8 @ (1 + 54 ¢ — Op) (4.2)

29 == 08 85 + cos @ (1 + 1+ @~ Bg)
We then obtain from (4.2), (3.13), and (3.20)
Fo=Fy(z, 5, 5m) = [z~ tg @ (5 + Az + {2, ~ Al = 4 (58 + o0 (4.9)

Let us determine the extrema of the function #,. The determinant of the system of
equations obtained by equating the partial derivatives of the function F, with respect to
% By 2 to zero equals zero. Therefore, this system has an infinite set of solutions of
the form
4" == Bggg, %= A i@ Q@ (4.4)
Substitution of the golutions (4.4) into (4.3) yields F, (% %% 2)=0. The function F
therefore takes the greatest value on the boundary of the domain of definition of its arguments.
We will investigate the behaviour of the function F; on the characteristics of the
family (1.3} (with the lower sign). In this case the search for the extrema of the func~
tion #, reduces to the problem of determining the c¢onditional extremum of the function &
under the condition
2, == const {4.5)
We obtain from (4.3)~{4.5) and the necessary condition for the existence of a conditional
extremum that the function F, can have a conditional extremum only at the points 5% = Ay,
= tg @z, But Fy (2%, 7, 5*) = 0. Consequently, the function F, takes its greatest value on
characteristics of the family (1.3) at points of intersection of these later with the UW or
with the interfacial boundary.
The elastic solution holds along the characteristic N8 of the family (1.3) (with the
upper sign) Fig.1) in the unloading domain when condition (2.13) is satisfied, and we can



249

write it in the form

Fy(0p.0y) =2 (sinBp + ¥V ME—Tcos0p) +- oM (I -t ¢ — 85 —
A4 n 4 g —By)) — Yo (MY Y ME—T) (cos B - A1 cosB,) O (4.8)

( F is an arbitrary point of the characteristic N~NS). Differentiating the function F,(6;,6y)
along the characteristic NS we obtain

OF, aF, Mg [P aF, 9 0y

;ﬁ'“;ge;'(‘g?wsax-l-‘ﬁcm%)'*‘m e COSG1+‘7;TCOSG1 = ()
2sin (8, — @) M M i ( e e . )

(_-—ai_n_(p—__T(l_msmeF)) ——-b—z—smq)—f—-—ay—co:qv

Here m is the unit vector giving the direction of the characteristics NS with the
coordinates m;=cosa;, a; are the angles between the vector m and the positive directions
of the coordinate axes. It was taken into acccount in deriving (4.7) that the quantity 0y
in (4.6) remains constant for any point of the characteristic ~NS.

We have @y e (n, 7+ ¢l, 90,/02< 0, 38;/9y >0 from the solution constructed earlier in the
plastic loading domain. Consequently, we obtain from (4.7) that aF,/é@ < 0. Therefore,
the function F,(®;,6y) takes the greatest value at the point N. But since the function
Fy (2, 24, 23) on any characteristic of the family (1.3} (with the lower sign) takes the
greatest value at the point of intersection with either the interfacial boundary or with
the UW, we then find that codition (4.1) can be violated first at points of the interfacial
boundary. Therefore, by using (3.10) and (3.19) we conclude that the solution constructed
holds when the following inequality is satisfied:

Len + T — tg PMF (2P + [F () A/(B2+cos )PP 1

Otherwise, secondary plastic flows occur behind the UW front and the construction of
the solution then requires a separate investigation.
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